W1,p Regularity of Weak Solutions to Maxwell’s Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Weak Solutions of Degenerate Eliptic Equations

In this article we establish the existence of higher order weak derivatives of weak solutions of the Dirichlet problem for a class of degenerate elliptic equations.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to impressible Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we prove that if u L 2 w (0,T ;L ∞ (R 3)) is small then as a Leray-Hopf solution u is regular. Particularly, an open problem proposed in [8] is solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Interior Regularity in Weak Spaces

We consider the interior regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)) was obtained. By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [KK] was solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (1)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [7] was solved.

متن کامل

On the regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space

In this paper the regularity of weak solutions and the blow-up criteria of smooth solutions to the micropolar fluid equations on three dimension space are studied in the Lorentz space L(R). We obtain that if u ∈ Lq(0, T ;L(R)) for 2 q + 3 p ≤ 1 with 3 < p ≤ ∞; or ∇u ∈ Lq(0, T ;L(R)) for 2 q + 3 p ≤ 2 with 3 2 < p ≤ ∞; or the pressure P ∈ Lq(0, T ;L(R)) for 2 q + 3 p ≤ 2 with 3 2 < p ≤ ∞; or ∇P ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2020

ISSN: 2314-4629,2314-4785

DOI: 10.1155/2020/1080594